Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1564, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378682

RESUMO

Although FOXP3+ regulatory T cells (Treg) depend on IL-2 produced by other cells for their survival and function, the levels of IL-2 in inflamed tissue are low, making it unclear how Treg access this critical resource. Here, we show that Treg use heparanase (HPSE) to access IL-2 sequestered by heparan sulfate (HS) within the extracellular matrix (ECM) of inflamed central nervous system tissue. HPSE expression distinguishes human and murine Treg from conventional T cells and is regulated by the availability of IL-2. HPSE-/- Treg have impaired stability and function in vivo, including in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Conversely, endowing monoclonal antibody-directed chimeric antigen receptor (mAbCAR) Treg with HPSE enhances their ability to access HS-sequestered IL-2 and their ability to suppress neuroinflammation in vivo. Together, these data identify a role for HPSE and the ECM in immune tolerance, providing new avenues for improving Treg-based therapy of autoimmunity.


Assuntos
Encefalomielite Autoimune Experimental , Linfócitos T Reguladores , Camundongos , Animais , Humanos , Interleucina-2/metabolismo , Glucuronidase/genética , Glucuronidase/metabolismo , Matriz Extracelular/metabolismo , Heparitina Sulfato/metabolismo
2.
Matrix Biol ; 123: 34-47, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783236

RESUMO

Pancreatic ß-cell dysfunction and death are central to the pathogenesis of type 2 diabetes (T2D). We identified a novel role for the inflammatory extracellular matrix polymer hyaluronan (HA) in this pathophysiology. Low concentrations of HA were present in healthy pancreatic islets. However, HA substantially accumulated in cadaveric islets of T2D patients and islets of the db/db mouse model of T2D in response to hyperglycemia. Treatment with 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, or the deletion of the main HA receptor CD44, preserved glycemic control and insulin concentrations in db/db mice despite ongoing weight gain, indicating a critical role for this pathway in T2D pathogenesis. 4-MU treatment and the deletion of CD44 likewise preserved glycemic control in other settings of ß-cell injury including streptozotocin treatment and islet transplantation. Mechanistically, we found that 4-MU increased the expression of the apoptosis inhibitor survivin, a downstream transcriptional target of CD44 dependent on HA/CD44 signaling, on ß-cells such that caspase 3 activation did not result in ß-cell apoptosis. These data indicated a role for HA accumulation in diabetes pathogenesis and suggested that it may be a viable target to ameliorate ß-cell loss in T2D. These data are particularly exciting, because 4-MU is already an approved drug (also known as hymecromone), which could accelerate translation of these findings to clinical studies.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Camundongos , Animais , Humanos , Ácido Hialurônico/metabolismo , Diabetes Mellitus Tipo 2/genética , Himecromona/farmacologia , Ilhotas Pancreáticas/metabolismo , Obesidade/genética , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo
3.
bioRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909502

RESUMO

Pancreatic ß-cell dysfunction and death are central to the pathogenesis of type 2 diabetes (T2D). We have identified a novel role for the inflammatory extracellular matrix polymer hyaluronan (HA) in this pathophysiology. Low levels of HA are present in healthy pancreatic islets. However, HA substantially accumulates in cadaveric islets of human T2D and islets of the db/db mouse model of T2D in response to hyperglycemia. Treatment with 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, or the deletion of the major HA receptor CD44, preserve glycemic control and insulin levels in db/db mice despite ongoing weight gain, indicating a critical role for this pathway in T2D pathogenesis. 4-MU treatment and the deletion of CD44 likewise preserve glycemic control in other settings of ß-cell injury including streptozotocin treatment and islet transplantation. Mechanistically, we find that 4-MU increases the expression of the apoptosis inhibitor survivin, a downstream transcriptional target of CD44 dependent on HA/CD44 signaling, on ß-cells such that caspase 3 activation does not result in ß-cell apoptosis. These data indicate a role for HA accumulation in diabetes pathogenesis and suggest that it may be a viable target to ameliorate ß-cell loss in T2D. These data are particularly exciting, because 4-MU is already an approved drug (also known as hymecromone), which could accelerate translation of these findings to clinical studies.

4.
bioRxiv ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36909599

RESUMO

FOXP3+ regulatory T cells (Treg) depend on exogenous IL-2 for their survival and function, but circulating levels of IL-2 are low, making it unclear how Treg access this critical resource in vivo. Here, we show that Treg use heparanase (HPSE) to access IL-2 sequestered by heparan sulfate (HS) within the extracellular matrix (ECM) of inflamed central nervous system tissue. HPSE expression distinguishes human and murine Treg from conventional T cells and is regulated by the availability of IL-2. HPSE-/- Treg have impaired stability and function in vivo, including the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Conversely, endowing Treg with HPSE enhances their ability to access HS-sequestered IL-2 and their tolerogenic function in vivo. Together, these data identify novel roles for HPSE and the ECM in immune tolerance, providing new avenues for improving Treg-based therapy of autoimmunity.

5.
Matrix Biol ; 116: 49-66, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36750167

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently emerged as the cause of a global pandemic. Infection with SARS-CoV-2 can result in COVID-19 with both acute and chronic disease manifestations that continue to impact many patients long after the resolution of viral replication. There is therefore great interest in understanding the host factors that contribute to COVID-19 pathogenesis. In this review, we address the role of hyaluronan (HA), an extracellular matrix polymer with roles in inflammation and cellular metabolism, in COVID-19 and critically evaluate the hypothesis that HA promotes COVID-19 pathogenesis. We first provide a brief overview of COVID-19 infection. Then we briefly summarize the known roles of HA in airway inflammation and immunity. We then address what is known about HA and the pathogenesis of COVID-19 acute respiratory distress syndrome (COVID-19 ARDS). Next, we examine potential roles for HA in post-acute SARS-CoV-2 infection (PASC), also known as "long COVID" as well as in COVID-associated fibrosis. Finally, we discuss the potential therapeutics that target HA as a means to treat COVID-19, including the repurposed drug hymecromone (4-methylumbelliferone). We conclude that HA is a promising potential therapeutic target for the treatment of COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Ácido Hialurônico , Inflamação/patologia , Síndrome Pós-COVID-19 Aguda
6.
JCI Insight ; 7(12)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35730564

RESUMO

Thick, viscous respiratory secretions are a major pathogenic feature of COVID-19, but the composition and physical properties of these secretions are poorly understood. We characterized the composition and rheological properties (i.e., resistance to flow) of respiratory secretions collected from intubated COVID-19 patients. We found the percentages of solids and protein content were greatly elevated in COVID-19 compared with heathy control samples and closely resembled levels seen in cystic fibrosis, a genetic disease known for thick, tenacious respiratory secretions. DNA and hyaluronan (HA) were major components of respiratory secretions in COVID-19 and were likewise abundant in cadaveric lung tissues from these patients. COVID-19 secretions exhibited heterogeneous rheological behaviors, with thicker samples showing increased sensitivity to DNase and hyaluronidase treatment. In histologic sections from these same patients, we observed increased accumulation of HA and the hyaladherin versican but reduced tumor necrosis factor-stimulated gene-6 staining, consistent with the inflammatory nature of these secretions. Finally, we observed diminished type I interferon and enhanced inflammatory cytokines in these secretions. Overall, our studies indicated that increases in HA and DNA in COVID-19 respiratory secretion samples correlated with enhanced inflammatory burden and suggested that DNA and HA may be viable therapeutic targets in COVID-19 infection.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , Pulmão , SARS-CoV-2 , Escarro
7.
J Clin Invest ; 132(9)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35499083

RESUMO

BACKGROUNDHyaluronan (HA), an extracellular matrix glycosaminoglycan, has been implicated in the pathophysiology of COVID-19 infection, pulmonary hypertension, pulmonary fibrosis, and other diseases, but is not targeted by any approved drugs. We asked whether hymecromone (4-methylumbelliferone [4-MU]), an oral drug approved in Europe for biliary spasm treatment that also inhibits HA in vitro and in animal models, could be repurposed as an inhibitor of HA synthesis in humans.METHODSWe conducted an open-label, single-center, dose-response study of hymecromone in healthy adults. Subjects received hymecromone at 1200 (n = 8), 2400 (n = 9), or 3600 (n = 9) mg/d divided into 3 doses daily, administered orally for 4 days. We assessed safety and tolerability of hymecromone and analyzed HA, 4-MU, and 4-methylumbelliferyl glucuronide (4-MUG; the main metabolite of 4-MU) concentrations in sputum and serum.RESULTSHymecromone was well tolerated up to doses of 3600 mg/d. Both sputum and serum drug concentrations increased in a dose-dependent manner, indicating that higher doses lead to greater exposures. Across all dose arms combined, we observed a significant decrease in sputum HA from baseline after 4 days of treatment. We also observed a decrease in serum HA. Additionally, higher baseline sputum HA levels were associated with a greater decrease in sputum HA.CONCLUSIONAfter 4 days of exposure to oral hymecromone, healthy human subjects experienced a significant reduction in sputum HA levels, indicating this oral therapy may have potential in pulmonary diseases where HA is implicated in pathogenesis.TRIAL REGISTRATIONClinicalTrials.gov NCT02780752.FUNDINGStanford Medicine Catalyst, Stanford SPARK, Stanford Innovative Medicines Accelerator program, NIH training grants 5T32AI052073-14 and T32HL129970.


Assuntos
Ácido Hialurônico , Himecromona , Administração Oral , COVID-19 , Europa (Continente) , Matriz Extracelular/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Himecromona/administração & dosagem , Himecromona/efeitos adversos
8.
medRxiv ; 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35411348

RESUMO

Thick, viscous respiratory secretions are a major pathogenic feature of COVID-19 disease, but the composition and physical properties of these secretions are poorly understood. We characterized the composition and rheological properties (i.e. resistance to flow) of respiratory secretions collected from intubated COVID-19 patients. We find the percent solids and protein content are greatly elevated in COVID-19 compared to heathy control samples and closely resemble levels seen in cystic fibrosis, a genetic disease known for thick, tenacious respiratory secretions. DNA and hyaluronan (HA) are major components of respiratory secretions in COVID-19 and are likewise abundant in cadaveric lung tissues from these patients. COVID-19 secretions exhibit heterogeneous rheological behaviors with thicker samples showing increased sensitivity to DNase and hyaluronidase treatment. In histologic sections from these same patients, we observe increased accumulation of HA and the hyaladherin versican but reduced tumor necrosis factorâ€"stimulated gene-6 (TSG6) staining, consistent with the inflammatory nature of these secretions. Finally, we observed diminished type I interferon and enhanced inflammatory cytokines in these secretions. Overall, our studies indicate that increases in HA and DNA in COVID-19 respiratory secretion samples correlate with enhanced inflammatory burden and suggest that DNA and HA may be viable therapeutic targets in COVID-19 infection.

9.
Methods Mol Biol ; 2303: 695-717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34626417

RESUMO

In this chapter, we describe the detection of the glycosaminoglycans hyaluronan and heparan sulfate in pancreatic islets and lymphoid tissues. The identification of hyaluronan in tissues is achieved by utilizing a highly specific hyaluronan binding protein (HABP) probe that interacts with hyaluronan in tissue sections. The HABP probe is prepared by enzymatic digestion of the chondroitin sulfate proteoglycan aggrecan which is present in bovine nasal cartilage and is then biotinylated in the presence of bound hyaluronan and the link protein. Hyaluronan is then removed by gel filtration chromatography. The biotinylated HABP-link protein complex is applied to tissue sections, and binding of the complex to tissue hyaluronan is visualized by enzymatic precipitation of chromogenic substrates.To determine hyaluronan content in tissues, tissues are first proteolytically digested to release hyaluronan from the macromolecular complexes that this molecule forms with other extracellular matrix constituents. Digested tissue is then incubated with HABP . The hyaluronan-HABP complexes are extracted, and the hyaluronan concentration in the tissue is determined using an ELISA-like assay.Historically, heparan sulfate was identified in tissue sections using the cationic dye Alcian blue and histochemistry based on the critical electrolyte concentration principle of differential staining of glycosaminoglycans using salt solutions. For both human and mouse pancreas sections, the current optimal method for detecting heparan sulfate is by indirect immunohistochemistry using a specific anti-heparan sulfate monoclonal antibody. A peroxidase-conjugated secondary antibody is then applied, and its binding to the anti-heparan sulfate antibody is visualized by oxidation and precipitation of a chromogenic substrate.


Assuntos
Ilhotas Pancreáticas , Animais , Bovinos , Glicosaminoglicanos , Heparitina Sulfato , Receptores de Hialuronatos , Ácido Hialurônico , Tecido Linfoide , Camundongos
10.
Elife ; 102021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34003116

RESUMO

Interleukin-2 is a pleiotropic cytokine that mediates both pro- and anti-inflammatory functions. Immune cells naturally differ in their sensitivity to IL-2 due to cell type and activation state-dependent expression of receptors and signaling pathway components. To probe differences in IL-2 signaling across cell types, we used structure-based design to create and profile a series of IL-2 variants with the capacity to titrate maximum signal strength in fine increments. One of these partial agonists, IL-2-REH, specifically expanded Foxp3+ regulatory T cells with reduced activity on CD8+ T cells due to cell type-intrinsic differences in IL-2 signaling. IL-2-REH elicited cell type-dependent differences in gene expression and provided mixed therapeutic results: showing benefit in the in vivo mouse dextran sulfate sodium (DSS) model of colitis, but no therapeutic efficacy in a transfer colitis model. Our findings show that cytokine partial agonists can be used to calibrate intrinsic differences in response thresholds across responding cell types to narrow pleiotropic actions, which may be generalizable to other cytokine and growth factor systems.


Assuntos
Interleucina-2/agonistas , Interleucina-2/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular , Colite/induzido quimicamente , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL
11.
Matrix Biol Plus ; 9: 100052, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33718858

RESUMO

The extracellular matrix glycosaminoglycan hyaluronan (HA) accumulates in human and mouse islets during the onset of autoimmune type 1 diabetes (T1D). HA plays a critical role in T1D pathogenesis, as spontaneous disease is blocked in mice fed the HA synthesis inhibitor 4-methylumbelliferone (4MU). The present study demonstrates the involvement of HA in T cell-mediated autoimmune responses to transplanted islets and in in vivo and in vitro T cell activation. Scaffolded islet implants (SIs) loaded with RIP-mOVA mouse islets expressing chicken ovalbumin (OVA) on their ß cells were grafted into T and B cell-deficient RIP-mOVA mice, which subsequently received CD4+ T cells from DO11.10 transgenic mice bearing OVA peptide-specific T cell receptors (TcRs), followed by injection of OVA peptide to induce an immune response to the OVA-expressing islets. By affinity histochemistry (AHC), HA was greatly increased in grafted islets with T cell infiltrates (compared to islets grafted into mice lacking T cells) and a portion of this HA co-localized with the infiltrating T cells. Transferred T cells underwent HA synthase (HAS) isoform switching - T cells isolated from the SI grafts strongly upregulated HAS1 and HAS2 mRNAs and downregulated HAS3 mRNA, in contrast to T cells from graft-draining mesenteric lymph nodes, which expressed HAS3 mRNA only. Expression of HAS1 and HAS2 proteins by T cells in SI infiltrates was confirmed by immunohistochemistry (IHC). DO11.10 mice fed 4MU had suppressed in vivo T cell immune priming (measured as a reduced recall response to OVA peptide) compared to T cells from control mice fed a normal diet. In co-cultures of naïve DO11.10 T cells and OVA peptide-loaded antigen-presenting cells (APCs), pre-exposure of the T cells (but not pre-exposure of APCs) to 4MU inhibited early T cell activation (CD69 expression). In addition, T cells exposed to 4MU during activation in vitro with anti-CD3/CD28 antibodies had inhibited phosphorylation of the CD3ζ subunit of the TcR, a very early event in TcR signaling. Collectively, our results demonstrate that T cell-derived HA plays a significant role in T cell immune responses, and that expression of T cell HAS isoforms changes in a locale-specific manner during in vivo priming and functional phases of the T cell response.

12.
Transl Androl Urol ; 10(1): 87-95, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33532299

RESUMO

BACKGROUND: To evaluate whether stone extraction with a loop ureteral catheter (LUC) in distal ureteral stones is associated with a higher frequency of ureteral strictures compared to treatment with primary ureteroscopic stone removal (p-URS) or ureteroscopic laser lithotripsy (l-URS). METHODS: Five hundred and forty-seven consecutive patients were primarily endourologically treated for distal ureteral stones in our department between 2005 and 2019 and included in the study protocol. Data was retrospectively obtained from the patients' charts and medical reports as well as from office-based urologists. Data analysis was performed using Fisher's exact test, Mann-Whitney test or Student's t-test as appropriate. A level of P<0.05 was assigned statistical significance. RESULTS: Four hundred and twelve patients were treated by URS (p-URS n=304, l-URS n=108) and another 135 by LUC stone extraction. Median follow-up was 41 [2-159] months. There was no difference between the groups concerning age, gender, proportion of patients with ureteral stenting, operating time, hospitalization or readmission rates. The number of ureteric strictures was small in all procedures [n=3 (1.0%) in p-URS, n=2 (1.9%) in l-URS and n=2 (1.5%) in LUC] and there was no difference between the groups concerning this serious complication (p-URS vs. LUC: P=0.6465; l-URS vs. LUC: P=0.9999). CONCLUSIONS: In small distal stones, LUC stone extraction still is an alternative to URS procedures in stone management with comparable results concerning postinterventional ureteral strictures. In experienced hands, it still has its value in accurately selected patients.

13.
Drug Deliv ; 28(1): 422-432, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33605181

RESUMO

Hyaluronan (HA) is abundant in the skin; while HA can be synthesized by the synthases (HAS1-3), HAS2 is the leading contributor. Dysregulation and accumulation of HA is implicated in the pathogenesis of diseases such as keloid scarring, lymphedema and metastatic melanoma. To understand how HA synthesis contributes to skin physiology, and pathologic and fibrotic disorders, we propose the development of skin-specific HA inhibition model, which tests an optimal delivery system of topical 4-methylumbelliferone (4-MU). A design-of-experiments (DOE) approach was employed to develop an optimal 4-MU skin-delivery formulation comprising propylene glycol, ethanol, and water, topically applied to dorsal skin in male and female C57BL/6J wildtype mice to determine the effect on HAS gene expression and HA inhibition. Serum and skin samples were analyzed for HA content along with analysis of expression of HAS1-3, hyaluronidases (HYAL 1-2), and KIAA1199. Using results from DOE and response surface methodology with genetic algorithm optimization, we developed an optimal topical 4-MU formulation to result in ∼70% reduction of HA in dorsal skin, with validation demonstrating ∼50% reduction in HA in dorsal skin. 4-MU topical application resulted in significant decrease in skin HAS2 expression in female mice only. Histology showed thicker dermis in male mice, whereas female mice had thinner dermal layer with more adiposity; and staining for HA-binding protein showed that topical 4-MU resulted in breakdown in HA. Our data suggest a topical 4-MU formulation-based dermal HA inhibition model that would enable elucidating the skin-specific effects of HA in normal and pathologic states.


Assuntos
Sistemas de Liberação de Medicamentos , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/genética , Himecromona/administração & dosagem , Administração Cutânea , Animais , Etanol/química , Feminino , Técnicas de Silenciamento de Genes , Himecromona/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Propilenoglicol/química , Água/química
14.
medRxiv ; 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32935110

RESUMO

Thick, viscous respiratory secretions are a major pathogenic feature of COVID-19 disease, but the composition and physical properties of these secretions are poorly understood. We characterized the composition and rheological properties (i.e. resistance to flow) of respiratory secretions collected from intubated COVID-19 patients. We found the percent solids and protein content are all greatly elevated in COVID-19 compared to heathy control samples and closely resemble levels seen in cystic fibrosis (CF), a genetic disease known for thick, tenacious respiratory secretions. DNA and hyaluronan are major components of respiratory secretions in COVID-19 and are likewise abundant in cadaveric lung tissues from these patients. COVID-19 secretions exhibited heterogeneous rheological behaviors with thicker samples showing increased sensitivity to DNase and hyaluronidase treatment. These results highlight the dramatic biophysical properties of COVID-19 respiratory secretions and suggest that DNA and hyaluronan may be viable therapeutic targets in COVID-19 infection.

15.
Matrix Biol ; 96: 69-86, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33290836

RESUMO

A coat of pericellular hyaluronan surrounds mature dendritic cells (DC) and contributes to cell-cell interactions. We asked whether 4-methylumbelliferone (4MU), an oral inhibitor of HA synthesis, could inhibit antigen presentation. We find that 4MU treatment reduces pericellular hyaluronan, destabilizes interactions between DC and T-cells, and prevents T-cell proliferation in vitro and in vivo. These effects were observed only when 4MU was added prior to initial antigen presentation but not later, consistent with 4MU-mediated inhibition of de novo antigenic responses. Building on these findings, we find that 4MU delays rejection of allogeneic pancreatic islet transplant and allogeneic cardiac transplants in mice and suppresses allogeneic T-cell activation in human mixed lymphocyte reactions. We conclude that 4MU, an approved drug, may have benefit as an adjunctive agent to delay transplantation rejection.


Assuntos
Células Dendríticas/citologia , Rejeição de Enxerto/prevenção & controle , Ácido Hialurônico/biossíntese , Himecromona/administração & dosagem , Linfócitos T Reguladores/citologia , Animais , Apresentação de Antígeno/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Rejeição de Enxerto/imunologia , Transplante de Coração/efeitos adversos , Humanos , Himecromona/farmacologia , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Camundongos , Transplante de Pâncreas/efeitos adversos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Transplante Homólogo
16.
Diabetologia ; 64(1): 152-158, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33125521

RESUMO

AIMS/HYPOTHESIS: IL-2 injections are a promising therapy for autoimmune type 1 diabetes but the short half-life of this cytokine in vivo limits effective tissue exposure and necessitates frequent injections. Here we have investigated whether an injectable hydrogel could be used to promote prolonged IL-2 release in vivo. METHODS: Capitalising on the IL-2-binding capabilities of heparin, an injectable hydrogel incorporating clinical-grade heparin, collagen and hyaluronan polymers was used to deliver IL-2. The IL-2-release kinetics and in vivo stability of this material were examined. The ability of soluble IL-2 vs hydrogel-mediated IL-2 injections to prevent autoimmune diabetes in the NOD mouse model of type 1 diabetes were compared. RESULTS: We observed in vitro that the hydrogel released IL-2 over a 12-day time frame and that injected hydrogel likewise persisted 12 days in vivo. Notably, heparin binding potentiates the activity of IL-2 and enhances IL-2- and TGFß-mediated expansion of forkhead box P3-positive regulatory T cells (FOXP3+ Tregs). Finally, weekly administration of IL-2-containing hydrogel partially prevented autoimmune diabetes while injections of soluble IL-2 did not. CONCLUSIONS/INTERPRETATION: Hydrogel delivery may reduce the number of injections required in IL-2 treatment protocols for autoimmune diabetes. Graphical abstract.


Assuntos
Doenças Autoimunes/prevenção & controle , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Hidrogéis/administração & dosagem , Interleucina-2/administração & dosagem , Animais , Heparina/administração & dosagem , Injeções , Células Secretoras de Insulina/imunologia , Interleucina-2/farmacocinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Solubilidade , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/fisiologia
17.
Matrix Biol ; 89: 27-42, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32001344

RESUMO

Versican is a large extracellular matrix (ECM) chondroitin sulfate (CS) proteoglycan found in most soft tissues, which is encoded by the VCAN gene. At least four major isoforms (V0, V1, V2, and V3) are generated via alternative splicing. The isoforms of versican are expressed and accumulate in various tissues during development and disease, where they contribute to ECM structure, cell growth and migration, and immune regulation, among their many functions. While several studies have identified the mRNA transcript for the V3 isoform in a number of tissues, little is known about the synthesis, secretion, and targeting of the V3 protein. In this study, we used lentiviral generation of doxycycline-inducible rat V3 with a C-terminal tag in stable NIH 3T3 cell lines and demonstrated that V3 is processed through the classical secretory pathway. We further show that N-linked glycosylation is required for efficient secretion and solubility of the protein. By site-directed mutagenesis, we identified amino acids 57 and 330 as the active N-linked glycosylation sites on V3 when expressed in this cell type. Furthermore, exon deletion constructs of V3 revealed that exons 11-13, which code for portions of the carboxy region of the protein (G3 domain), are essential for V3 processing and secretion. Once secreted, the V3 protein associates with hyaluronan along the cell surface and within the surrounding ECM. These results establish critical parameters for the processing, solubility, and targeting of the V3 isoform by mammalian cells and establishes a role for V3 in the organization of hyaluronan.


Assuntos
Versicanas/química , Versicanas/metabolismo , Processamento Alternativo , Animais , Éxons , Glicosilação , Células HEK293 , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Células NIH 3T3 , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Ratos , Versicanas/genética
18.
Atherosclerosis ; 287: 81-88, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31233979

RESUMO

BACKGROUND AND AIMS: The non-vitamin K oral anticoagulant dabigatran etexilate (dabigatran) is increasingly prescribed to patients with non-valvular atrial fibrillation and venous thromboembolism. Adipose tissue (AT) inflammation during obesity plays a crucial role in the development of insulin resistance, type II diabetes and atherogenesis. The aim of the present study was to investigate the effects of thrombin inhibition by dabigatran in a combined model of diet-induced obesity and atherosclerosis. METHODS: Female Low density lipoprotein receptor knockout (Lldr-/-) mice were fed a high-fat diet containing 5 mg/g dabigatran or matching control for 20 weeks. RESULTS: Dabigatran-treated animals showed increased adipocyte hypertrophy, but reduced numbers of pro-inflammatory M1-polarized macrophages in the adipose tissue. Abundance of pro-inflammatory M1 macrophages was also decreased in the aortic wall of dabigatran-fed mice. Multiple circulating cytokines were reduced, indicating an effect in systemically relevant secretory compartments such as the AT. CONCLUSIONS: Dabigatran treatment reduces pro-inflammatory M1 macrophages in atherosclerotic lesions, thereby contributing to plaque stabilizing and atheroprotective effects of the thrombin inhibitor. This finding is not restricted to the vascular wall but is also present in AT where dabigatran treatment reduced the release of pro-inflammatory cytokines and accumulation of M1 macrophages.


Assuntos
Tecido Adiposo/patologia , Aorta Torácica/patologia , Aterosclerose/tratamento farmacológico , Dabigatrana/farmacologia , Inflamação/tratamento farmacológico , Ativação de Macrófagos/fisiologia , Macrófagos/patologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Antitrombinas/farmacologia , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Imuno-Histoquímica , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Biomaterials ; 203: 52-62, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30852423

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a life-threatening progressive lung disorder with limited therapeutic options. While interleukin-10 (IL-10) is a potent anti-inflammatory and anti-fibrotic cytokine, its utility in treating lung fibrosis has been limited by its short half-life. We describe an innovative hydrogel-based approach to deliver recombinant IL-10 to the lung for the prevention and reversal of pulmonary fibrosis in a mouse model of bleomycin-induced lung injury. Our studies show that a hyaluronan and heparin-based hydrogel system locally delivers IL-10 by capitalizing on the ability of heparin to reversibly bind IL-10 without bleeding or other complications. This formulation is significantly more effective than soluble IL-10 for both preventing and reducing collagen deposition in the lung parenchyma after 7 days of intratracheal administration. The anti-fibrotic effect of IL-10 in this system is dependent on suppression of TGF-ß driven collagen production by lung fibroblasts and myofibroblasts. We conclude that hydrogel-based delivery of IL-10 to the lung is a promising therapy for fibrotic lung disorders.


Assuntos
Bleomicina/toxicidade , Hidrogéis/química , Interleucina-10/administração & dosagem , Interleucina-10/uso terapêutico , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Animais , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Humanos , Ácido Hialurônico/química , Imuno-Histoquímica , Camundongos
20.
J Biol Chem ; 294(19): 7864-7877, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30914479

RESUMO

4-Methylumbelliferone (4-MU) inhibits hyaluronan (HA) synthesis and is an approved drug used for managing biliary spasm. However, rapid and efficient glucuronidation is thought to limit its utility for systemically inhibiting HA synthesis. In particular, 4-MU in mice has a short half-life, causing most of the drug to be present as the metabolite 4-methylumbelliferyl glucuronide (4-MUG), which makes it remarkable that 4-MU is effective at all. We report here that 4-MUG contributes to HA synthesis inhibition. We observed that oral administration of 4-MUG to mice inhibits HA synthesis, promotes FoxP3+ regulatory T-cell expansion, and prevents autoimmune diabetes. Mice fed either 4-MUG or 4-MU had equivalent 4-MU:4-MUG ratios in serum, liver, and pancreas, indicating that 4-MU and 4-MUG reach an equilibrium in these tissues. LC-tandem MS experiments revealed that 4-MUG is hydrolyzed to 4-MU in serum, thereby greatly increasing the effective bioavailability of 4-MU. Moreover, using intravital 2-photon microscopy, we found that 4-MUG (a nonfluorescent molecule) undergoes conversion into 4-MU (a fluorescent molecule) and that 4-MU is extensively tissue bound in the liver, fat, muscle, and pancreas of treated mice. 4-MUG also suppressed HA synthesis independently of its conversion into 4-MU and without depletion of the HA precursor UDP-glucuronic acid (GlcUA). Together, these results indicate that 4-MUG both directly and indirectly inhibits HA synthesis and that the effective bioavailability of 4-MU is higher than previously thought. These findings greatly alter the experimental and therapeutic possibilities for HA synthesis inhibition.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Ácido Hialurônico/biossíntese , Himecromona/análogos & derivados , Linfócitos T Reguladores/metabolismo , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/patologia , Himecromona/farmacologia , Camundongos , Linfócitos T Reguladores/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...